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Abstract. There is an increasing interest in developing Phase Change
Memory (PCM) based main memory systems. In order to retain the
latency benefits of DRAM, such systems typically have a small DRAM
buffer as a part of the main memory. However, for these systems to be
widely adopted, limitations of PCM such as low write endurance and
expensive writes need to be addressed. In this paper, we propose PCM-
aware sorting algorithms that can mitigate writes on PCM by efficient
use of the small DRAM buffer. Our performance evaluation shows that
the proposed schemes can significantly outperform existing schemes that
are oblivious of the PCM.

1 Introduction

Design of database algorithms for modern hardware has always been a promi-
nent research area. Phase Change Memory (PCM) is a latest addition to the
list of modern hardware demanding the design of PCM-friendly database al-
gorithms. With PCM being better than flash memory (SSD) in terms of write
endurance, read and write latency, focus has shifted to exploring the possibilities
of exploiting PCM for databases. Because of the high density and lower power
consumption of PCM as compared to DRAM, it is evident that PCM might
be an alternative choice for main memory [2, 3]. However, as PCM has a low
write endurance and high write latency as compared to DRAM, it is essential
to design algorithms such that they do not incur too many writes on PCM and
thus prevent the hardware from getting worn out soon.

In-memory sorting is a write-intensive operation as it involves huge movement
of data in the process of ordering it. Quick sort is the most expensive in terms of
data movement though it is the best in time complexity. Selection sort involves
fewest data movement but it has quadratic time complexity and also incurs a
lot of scans on the data. In this paper, we design write-aware in-memory sorting
algorithms on PCM. Like [3], we also use a small DRAM buffer to alleviate
PCM writes using efficient data structures. We assume that the data movement
between DRAM and PCM can happen seamlessly. This can be achieved through
a hardware driven page placement policy that migrates pages between DRAM
and PCM [6].
? Please note that this work was done while the author was at the National University
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Our first sort algorithm constructs a histogram that allows us to bucketize the
in-memory data such that either the depth or width of each bucket is DRAM-size
bound. This is an important heuristic that we introduce to make our algorithm
write-efficient as well as run-time efficient. Quick sort is employed on buckets that
are depth bound and counting sort is used to sort the buckets that are width
bound such that minimum writes are incurred on PCM. We further minimize
PCM writes aggressively with an improved version of our algorithm. In this
variant, we construct the histogram even before the data is read into PCM by
sampling data directly from the disk.

If the unsorted data on disk sorted doesn’t entirely fit into the PCM at one
go, external sort is performed which involves getting the data in chunks to main
memory one by one, sorting the chunk, creating the runs on disk and finally
merging those runs. We show in the experiments that our algorithm performs
well even in the scenario where the entire data is not memory resident.

There have been few works in adapting database algorithms for PCM. In
[1], a B+ tree index structure that incurs fewer writes to PCM (which is used
as main memory) is proposed. Though the idea to reduce memory writes is
beneficial, the B+ tree nodes (at least the leaves) are kept unsorted to obtain
fewer modifications during insertion and deletion of data to the index. This leads
to more expensive reads. An algorithm to adapt hash join is also proposed in
[1] which minimizes the writes from the partitioning phase on PCM by storing
the record ids of the tuples (or the differences between consecutive record ids)
in the hash partitions. The records are in-place accessed during the join phase
using the record ids. The algorithm also aims at achieving fewer cache misses.

PCM-aware sorting is of significance in the context of databases as it is used
in many query processing and indexing algorithms. Our work to produce a PCM
aware and efficient sorting algorithm can help alleviate the heavy read exchange
the existing B+ tree index algorithm in [1] does. It can also be extended to
obtain a PCM-aware sort merge join algorithm. To our knowledge, this is the
first report work on sorting algorithms in memory-based PCM.

We present our basic and advanced PCM sorting algorithms in Sections 2.3
and 2.4 respectively. We report results of an extensive performance study in
Section 3.

2 PCM-aware sorting algorithm

Our goal is to design efficient sorting algorithms that incur as few writes on
PCM as possible. As context, we consider external multi-way merge sort that
comprises two main phases: (a) generating sorted runs, and (b) merging the
runs into a single sorted file. Our key contribution is in the first phase where
PCM-aware in-memory sorting is proposed.

For our hybrid architecture, we divide the main memory into three sections.
PCM is divided into two partitions - a large chunk to hold the incoming unsorted
data and a small chunk for use by a histogram. We refer to the first partition as
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sort-chunk, and the second partition as hist-chunk. The DRAM forms the third
partition.

In the following subsection, we describe the run generation phase. We first
look at a naive strategy, afterwhich we present our two proposed solutions.

2.1 A Naive Approach

Under the naive strategy, we fill the sort-chunk with as many tuples from disk as
possible. Next, we adopt the scheme in [4] to generate an equi-depth histogram
(in hist-chunk) using a single scan of the data in the sort-chunk.

The depth of each bucket in our equi depth histogram will be no greater
than DRAM size. Once the histogram is constructed, the input data in the
PCM buffers is shuffled according to the bucket ranges in the histogram. That
means, the data belonging to each bucket range is brought together such that
data belonging to bucket 0 is placed first, bucket 1 next and so on. So the input
data is sequentially arranged according to the bucket intervals, still unsorted
within each interval. Now each bucket is sent to the DRAM and a quick sort
is done upon the bucket data in DRAM. The sorted data will be written to
the sorted run on disk directly (assuming DRAM has direct access to the disk).
Figure 1 illustrates the manner in which bucket transfer is done from PCM to
DRAM.

Fig. 1. PCM-aware sorting scheme (naive).

The PCM writes in this scheme will not exceed 2n + sizeof(Histogram)
(including the disk fetches) where “n” denotes the total size of the input block
of data fetched into PCM. This is because, histogram storage on PCM and
shuffling of unsorted data according to bucket range contribute to writes.

2.2 Refining the naive sorting scheme

We observe that the naive scheme described above is insensitive to data skew.
Where data is skewed, using quicksort is an overkill (and costly). Instead, we can
potentially improve the performance by adopting the Counting Sort. Instead of
swapping the elements to be sorted, it focusses on the count of each element. If
the data range is small enough to fit in memory, a count array is constructed with
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array index starting from minimum element of the input data to the maximum
element. The count array determines the number of elements less than or equal
to each data element. Thus it determines the final positions of each data element
in the sorted array. Please refer to [10] for complete description of the algorithm.

One of the key disadvantages of Counting Sort is that it is effective only for
small data ranges. However, this seemingly disadvantageous trait indeed benefits
our scheme. For skewed data, our naive scheme fails to identify the skewedness
and constructs several equi depth buckets. Whereas, if we can identify that the
frequency of values in a certain range is higher and if the range manages to fit
into DRAM, we can replace quick sort with counting sort for the elements of
that range.

– The bucket data need not fit into DRAM. Instead if the count array is smaller
than DRAM size, it can help us sort many elements in one go, thus saving
time.

– This makes our histogram hybrid and compact: either its width or the depth
is DRAM-bound.

In the example shown in Figure 2, DRAM size is 50 elements, and PCM
holds an unsorted data block of 600 elements. These 600 data elements are
distributed over three non-overlapping ranges as 50, 500 and 50 elements. It can
be observed that the ranges of the first and third buckets are large spanning over
1000 element width, but the depth is just 50. On the other hand, the middle
bucket which has just a range of 50 elements holds 500 elements because of
several duplicates. Not paying attention to the skewed range of a small interval
holding a whopping 500 values, an equi-depth histogram is constructed by our
naive scheme with 12 buckets of 50 elements each since 50 is the available DRAM
size. But if we can pay attention to the width of each bucket and strive to make
it DRAM-contained, we can achieve a compact histogram with just 3 buckets.
This is because the second bucket’s width is 50 (<= size of DRAM) and hence
a DRAM-contained count array can be constructed for the data in the second
bucket. Buckets 1 and 3 are depth-bound, so quick sort is employed to sort them
by transferring the bucket data to DRAM.

That means, while constructing a bucket we need to check whether the depth
or width of a bucket is hitting the DRAM limit first as input (unsorted) data
keeps getting added to a bucket. Whichever parameter hits the limit later is the
one we use to decide the bucket boundaries. For example, if the data is sparsely
distributed, bucket width crosses DRAM limit easily but it will take a while
for its depth to hit the DRAM limit, in that case the bucket is depth-bound.
In case of densely distributed data, it is the other way round and the bucket
becomes width bound. So our histogram is robust to both sparsely and densely
distributed data.

One more advantage in having a compact histogram is that, the amount
of data that has to be transferred to DRAM is minimal. Whenever there is an
opportunity to avoid data transfer, we grab it by employing counting sort. In the
worst case where the entire data is uniformly distributed, our hybrid histogram
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gracefully reduces to an equi-depth histogram since the need to use counting sort
arrives only in the case of non-uniformly distributed data. Perhaps, a constraint
in using counting sort is that it is basically applicable to sorting integers.
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Fig. 2. Compact Histogram achieved using Counting Sort for normal data distribution.

2.3 Algorithm 1: Basic PCM-aware sorting

Our scheme consists of the following steps:

– Construction of the hybrid DRAM-bounded width / depth histogram
– Shuffling the input data block according to bucket range
– Since the histogram constructed is not 100% accurate, efforts should be made

to combat it
– Transfer of data / range to DRAM to perform quick / counting sort

Once the hybrid histogram is constructed (Refer Figure 3), the algorithm
transfers the bucket data to DRAM and performs quick sort if the depth ≤
DRAM size. On the contrary, if the width ≤ DRAM size, the count array is
built in DRAM and accordingly the data is moved within PCM to its final
places by looking up to the count array. It should be noted that we do not use
a separate output array for counting sort, rather the data on PCM is moved
in-place to reach the sorted order.

Fig. 3. Basic PCM-aware sort scheme.
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Construction of Histogram We follow a similar way of histogram construc-
tion as [5]. A scan of the input elements in PCM is performed to uniformly pick
up “d” random elements, two of them being the minimum and maximum of the
scanned block. The reason for including maximum and minimum values in the
sample is to let them participate in fixing the bucket boundaries of the first
and the last buckets respectively. Else, we would miss some potential values we
need to sort. With “d” being the DRAM size, the sampled elements are sorted
inside DRAM using quicksort. Now the sorted sample array present in DRAM
is scanned to construct the required histogram.

The constructed histogram is for the sample array and it needs to be scaled
up for the original PCM resident data. It should be understood that the width
(range) of each bucket in the histogram is appropriate because we made sure we
did not even miss including the original data’s minimum and maximum values
while fixing the bucket ranges. The only difference is that, since we are operating
on the sampled array, the maximum allowed depth of each bucket (in cases
where the width has already exceeded the DRAM limit) is d2

sizeof |inputelements| as
against the regular value of d. Here inputelements refers to the original unsorted
data residing in the PCM. Since the histogram is constructed on PCM, the depth
values of all the buckets are scaled up before storing them in the histogram.

Firstly, PCM writes are incurred by the histogram after its construction
(because it is stored on PCM). The number of writes is equal to the size of the
histogram.

Kolmogorovs statistic gives a theoretical support to sampling. It fixes a bound
of 0.05 error for sample size of 1024 tuples and 740 tuples with confidence 99%
and 95% respectively([5]).

Shuffling of data according to histogram buckets The unsorted data held
in the PCM buffer is re-arranged such that all the elements belonging to the
same bucket are brought to contiguous locations though unsorted. This is used
in our naive scheme as well (refer section 2.1). The easiest way to do this is to
create a new array and to transfer the elements from the original array to the
new array according to the requirement. But we choose to do in-place shuffling
to be memory conscious.

If the total number of PCM elements are “n”, at max, there can only be
“n” moves and thus “n” integer writes, i.e, n ∗ sizeof(int) byte writes. On
the other hand if we are sorting tuples, the number of writes would rather be
n ∗ sizeof(tuple).

Appropriating the hybrid histogram We make use of Kolmogorovs statistic
to reduce the error in bucket depths, followed by a rigorous bucket correction
procedure.

We introduce a tightening factor ∆ into the bucket depth to reduce the possi-
bility of errors. As errors in the histogram are induced because of miscalculating
bucket depths, we apply the tightening factor to depth bound and not width
bound. Instead of DRAM size “d”, the depth bound is fixed to (1−∆)∗d, where
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∆ could range from 0.05 to 0.1 meaning 5% to 10% error is accommodated.
Even though this bound tightening is applied, bucket depths can still cross the
DRAM size with a small probability. To correct it we apply iterative splitting
and shuffling on the erring buckets till we reach a correct hybrid histogram.

The extra writes incurred during histogram correction are dependant on the
number of buckets which are corrected. Each time a bucket is split, it incurs
a new bucket write on the histogram and the PCM data belonging to that
bucket alone is shuffled incurring PCM writes. If “new” is the number of new
buckets that are created because of additional splits, on an average it leads to
new ∗ (hist bucket + PCM bucket data) writes on PCM because of histogram
manipulation and bucket shuffling. These writes are few, because on an average,
very few buckets are corrected and no bucket from our experiments encounters
more than two rounds of additional splits.

Writes during quick / counting sort As mentioned in section 2.1, quick
sort is done in DRAM for those buckets whose depth is DRAM bounded and
the sorted elements can be written directly to the disk provided DRAM in the
hybrid architecture has direct access to the disk incurring zero PCM writes. In
cases where the bucket width is DRAM bounded, the count array is computed
in the DRAM. Out of memory consideration, we perform in-place movement
of data on PCM looking up to the aggregated count array present in DRAM.
So the writes are again at max “n” provided there are “n” data elements. It is
clear that because of counting sort, to get the sorted order a linear number of
writes happen on PCM. But these writes are minimum and worthwhile given
the speed and compact histogram we achieve because of counting sort using
our hybrid scheme. Moreover if the data is uniformly distributed, our algorithm
automatically reduces to our naive scheme.

Because we use counting sort for width-bound buckets, we achieve some
linearity in time complexity. Since counting sort is used only in the case of non-
uniform data distribution, suppose “r” buckets are depth bound and “n − r”
buckets are width bound, the computation goes as

∑r−1
i=0 O(ni log ni) +

∑n−1
i=r

O(ni + ki) where ki indicates the width of “i”th bucket as against a relatively
expensive

∑n−1
i=0 O(ni log ni) incurred by a non-skew aware scheme.

2.4 Algorithm 2: Advanced PCM-aware sorting

The best running time is achieved by quick sort and the least memory writes
are achieved by selection sort. But quick sort is worse in terms of writes because
of numerous swaps and selection sort is bad in terms of the huge reads and long
sorting time. We try to achieve an algorithm which is close to both the ideal
attributes of least writes and running time in our algorithm 1.

In this section, we design an algorithm that improves over the basic PCM
aware sort scheme by aggressively reducing the PCM writes. The writes incurred
in main memory because of comparisons and swaps have already been reduced
using the basic PCM aware algorithm. The aspect that incurs any extra writes
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(other than disk fetches to PCM) is histogram creation and shuffling. We already
ensure that the histogram is always compact. But shuffling is write-intensive. Be-
cause our histogram is constructed after fetching the data from disk to memory,
we need to shuffle the data in the memory to ensure the unsorted data belonging
to each bucket gets collected together. This causes a number of writes directly
proportional to the data size that is memory resident, because in the worst
case each tuple (assuming that we are sorting tuples) has to move to get to its
intended bucket.

Our idea is to construct the histogram even before the data is fetched into
main memory (please refer Figure 4(a)), so that once the actual data from disk
starts arriving, it can directly go to its respective bucket and thus avoid a shuffle.
This can avoid PCM writes totally except for the disk fetch. The efficiency of
this approach still depends on the accuracy of the histogram. And the accuracy
of the histogram depends on the extent to which sampling helps us. But this
incurs a lot of random reads from the disk.

So we adopt two steps to enhance the accuracy of our histogram while keeping
the random reads from disk within limit.

– While fetching the data from the disk to DRAM to construct the sampling
array for sorting, we drop all attributes in the tuples other than the sorting
attribute.

– At the same time, we do not fill the entire DRAM with the sampling array.
We just use a small fraction of the DRAM to construct the sample array.
So this avoids the overhead of sorting too many tuples beforehand and the
overhead of random reads from the disk.

�

(a) Pre-construction of histogram
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(b) Creation of Overflow array in DRAM

Fig. 4. The Advanced PCM-Aware Sort

It is important to note that in this advanced scheme, we do not need to re-
scan data and correct the histogram depths. Correction is done as the data is
fetched from disk to PCM.
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Errors and correction during memory fetch As the tuples are fetched into
PCM, they go into their respective bucket boundaries which are computed from
the histogram widths. But in this case, both widths and depths can be at fault
unlike algorithm 1 which needs to correct wrong depths. Since the histogram
is being pre-constructed, the minimum and maximum elements of the fetched
block are not known. So the first bucket and the last bucket in our histogram
can be erroneous with respect to the minimum boundary of the first bucket and
the maximum range boundary of the last bucket. To accommodate the wrong
estimate, we keep extending the border buckets’ boundaries as elements come
in. If a tuple with its sort attribute value ≤ minimum-boundary of bucket 1, the
new tuple will now belong to bucket 1 and the minimum boundary is updated.
The same applies to elements arriving beyond the last bucket as well. But there
are two problems with this.

– The new elements can cause the depth to go beyond the estimate. If the
depths cross DRAM size and if the bucket is depth-bound, sorting the bucket
using DRAM is difficult.

– The new element can cause the width to go beyond the estimated boundary.
If the bucket is width bound and if counting sort was planned to be employed,
the bucket can no longer be sorted using DRAM as the count array is too
big to fit into DRAM.

The width error is solved using a slack (∆) 5% to 10% (same as the tightening
factor in Section 2.3) which is sufficient for uniformly distributed data. But in
the case of non-uniformly distributed data, the global maximum and minimum
which we know from pre-computed database statistics are always included. This
is because if the skew in data distribution is extremely high, it is impossible for
slack to control width errors.

To correct depth errors, we introduce the construction of an overflow array. If
there is a bucket whose depth was under-estimated, there should be some other
bucket with an over-estimated depth. So if there is no space to accommodate
some of the elements (tuples) belonging to a particular bucket due to an overflow,
they can still find a place on the PCM in some of the holes created because of
some underflowing buckets. But the management of these holes requires a lot of
meta data and a very tedious way of maintaining bucket information. An overflow
from some bucket may have to be distributed over multiple small underflows from
several underflow buckets. To avoid such cumbersome management, we make use
of a separate overflow array.

The overflow array is constructed in DRAM and is transferred to PCM once
buckets start arriving to DRAM for their sort as shown in Figure 4(b). So all
the tuples which overflow will at first be stored in DRAM in the overflow array.
The number of overflow tuples is expected to be under DRAM size, given the
accuracy of the histogram is not so bad. Otherwise, the overflow elements spill
over to the disk in the individual overflow files, one for each bucket.

There are two cases that need to be handled during the actual sort of the
buckets on PCM. The first of them is when the overflow is restricted to main
memory alone, which means the overflow array doesn’t exceed the DRAM size.
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In such a case, the overflow array is sorted in DRAM first according to bucket
id’s and next according to the sort attribute, before transferring it to the PCM.
Before the first PCM-resident bucket data moves over to DRAM for sorting, the
sorted overflow is also prepared for movement to PCM in the void space. This
swap of memory blocks takes place using some vacant input or output buffer as
the intermediate swap media. The crucial condition for this to happen is that
the first bucket is always depth-bound. Otherwise, if the bucket is width-bound,
the count array needs to be constructed in DRAM and the overflow elements
have no place to go. It is always theoretically possible to make a bucket depth
bound by enumerating elements during histogram construction, than to make
it width bound as the values of the elements and distribution are beyond our
control. Once the overflow array is transferred to PCM, it will stay there till the
sort of all the PCM-resident buckets finishes.

Sorting during in-memory overflow If the bucket is width bound, a counting
array is constructed over the data present in PCM buffers as well as the overflow
array and an in-place counting sort is performed on this aggregate array.In case
of a depth bound bucket, the bucket data in DRAM is first quick sorted and
merged with the already sorted overflow data belonging to the same bucket
residing in PCM (See Figure 5(a)).
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(a) Handling main memory overflow for
a bucket.
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(b) Overflow aware replacement selec-
tion.

Fig. 5. Advanced PCM sort-aware scheme

Sorting for disk overflow For buckets whose overflow elements are on disk,
neither quick sort nor counting sort is applicable. So, a variant of replacement
selection is applied. Our algorithm is different from the conventional replacement
selection as we have two main memory resident data structures that need to be
maintained. One is the overflow array and another one is the minimum-heap
constructed over the bucket data present in DRAM. But sorting the overflow
array by constructing a heap on it is avoided as it incurs additional PCM writes.
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It is important to note that the overflow array was previously sorted when it was
formed inside DRAM. Now it is no longer sorted as new elements keep entering
it from the disk. And moreover we have overflow elements belonging to several
buckets keep arriving into the PCM-resident overflow array.

So in addition to bucket id (bid), we maintain one more field called “frozen”
which accepts a boolean value (see Figure 5(b)). If an overflow element belonging
to any bucket has left the overflow array, it makes space for the disk resident
overflow tuples belonging to the current bucket. Though these elements arrive
in unsorted order, they belong to the current run as along as they are ≥ the
minimum value (or root) that has just left the min-heap. Else the element is
marked as frozen and belongs to the next run.

Once there is no more space for any more disk elements to enter the PCM
overflow array, the bucket elements present in the min-heap of DRAM will start
initiating the replacement selection. The root of the min-heap will scan the
PCM-resident overflow array to know if any elements ≤ itself belonging to the
same bucket are present. If yes, those elements are sent out to the sorted run
before the current root. Once the current root leaves the min-heap, another
element from the overflow array is brought into the DRAM for min-heap recon-
struction and the fetch of overflow elements from disk into the overflow array is
repeated provided it has space. If the overflow array is filled with other bucket
values and there no more elements in the overflow array belonging to the current
bucket, our overflow based replacement selection reduces to the conventional re-
placement selection. And the elements from the disk are fetched straight into
the DRAM heap. Finally the frozen elements in the overflow array and in the
DRAM belonging to the current bucket will get unfrozen to resume min-heap
reconstruction.

The bottomline is, to have a run at least as long as the traditional replacement
selection and if possible a longer run, we utilize the overflow space in PCM and
the DRAM buffer to implement our variant of replacement selection. So we
manage two buffers, one in PCM and one in DRAM, while fetching data from
disk for replacement selection. During this, frozen elements are created in both
the buffers. Though the PCM overflow space is an asset that can be exploited to
produce longer runs, we have to conduct a few additional scans (reads) on it to
avoid PCM writes. Figure 6(a) portrays elements arriving from disk to the PCM
buffer and being assigned a frozen value depending on their comparison with the
min-heap root present in DRAM. Likewise, Figure 6(b) shows elements from disk
directly arriving into the DRAM heap following the absence of unfrozen current
bucket elements and space in the PCM buffer.

3 Performance Study

Our PCM simulator is actually DRAM based and uses the measures from [1]
to simulate the PCM write latency on DRAM. By default our hybrid memory
architecture reserves 3% of the simulatorś main memory obtained from actual
DRAM for simulated DRAM and 97% behaves like PCM.
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(a) Managing PCM buffer (b) Managing DRAM buffer

Fig. 6. Managing buffer for replacement selection

The experiments were run on a PC with Intel(R) Xeon(R) 2.33GHz CPU. All
the experiments are performed with a default simulator memory size of 1,000,000
tuples with each tuple being 100 bytes wide. The experiments are conducted on
data with uniform and non-uniform distribution. The default file size is kept at
1 million tuples.

Our basic and advanced PCM aware sort schemes were compared against
quick sort, selection sort and counting sort. Our comparison is with the sort hav-
ing best running time at one end and other existing sorts which can potentially
provide few PCM writes at the other end of the spectrum. For fair comparison
we allocate the total PCM + DRAM main memory to all other schemes we
compare with. Due to space constraint, we only present representative results
here.

3.1 Uniform distribution

Figure 7(a), 7(b) and 7(c) compare the various schemes in terms of their ef-
ficiency (time), total number of PCM writes (after the final merge) and total
number of PCM reads (after the final merge) respectively. The data size varies
from 1 to 5 million tuples, and the data are uniformly distributed data. Selec-
tion sort takes the longest sorting time as against quick sort which is the fastest.
Beyond an unsorted disk file size of 5,000,000 tuples, selection sort takes longer
than 4 hours of sort time. As expected, quick sort is the weakest in write en-
durance and incurs lot of writes and reads (during and after merge). Selection
sort, though good in writes, performs poorly with respect to PCM reads. It is
interesting to note that there are no readings for Counting Sort in Figure 7 owing
to its inability to deal with uniform distribution. Counting sort creates numerous
runs with tiny run size that it takes too long to finish run generation and merge.
The runs are small because, the incoming block has its range too wide in the
case of a uniform distribution. So counting sort ends up fetching small blocks to
let their count array fit into the main memory.

PCM-aware sort(basic) comes close to quick sort in running time, and also
good in reads but it is worse than selection sort with respect to PCM writes.
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(a) Response Time - Uni-
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(b) PCM Writes - Uniform
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(c) PCM Reads - Uniform
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form

�

� � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��
� 	


�
� 
�

�
��

�� �

	

�� �
��
�
	
�


� � � � � � � �  ! " � #

$ %

& %

' & (

) * + ' & (

(f) PCM Reads - Nonuni-
form

Fig. 7. Comparison among various sorting schemes

This can be attributed to the writes expended in shuffling of data after the
construction of histogram. Since advanced PCM sort was designed with an aim
to get rid of those writes, it performs as well as selection sort in terms of writes.
It also incurs the least PCM reads.

3.2 Non-uniform distribution

For non-uniform distribution, we use the normal distribution. The skew is set to
a default value by fixing the values of mean and variance. While mean is set to
(min+max)/2, standard deviation is set to (max−min)/k by basic definitions.
In our default settings, k = 100. Figure 7(d), 7(e) and 7(f) shows the response
time, PCM write counts and PCM read counts for the various schemes. The
values of selection sort are not plotted in Figure 7 because the performance
of selection sort remains similar to that of the uniform distribution. Counting
sort is applicable here as it is sensitive to the distribution of elements. However,
in our experiments, counting sort sustains upto an unsorted disk file size of 3
million as it can be seen from the figures. Though the counting sort PCM writes
during run creation are good (not shown owing to space constraint), the overall
writes after the final merge phase are worse. This is because of the multiple
merges counting sort undergoes owing to the multiple small runs it produced
during run creation phase. The expensive merge phase also causes counting sort
to have a long sorting time. Our basic PCM aware sort scheme performs well
with respect to sort time and also incurs reasonably small PCM writes and reads.
But our advanced PCM sort scheme, though with a penalty of extra sorting time
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than our basic scheme, outperforms all other schemes in PCM writes and reads
by aggressively reducing them to a minimum.

3.3 Varying the extent of sampling

Sampling array that is constructed in the DRAM for the construction of his-
togram can have major impact on our advanced PCM-aware scheme alone. Fig-
ures 8(a) and 8(b) show that advanced PCM aware sort scheme is the only
sensitive scheme to this sampling size variation. This is because, the sample
size determines the number of random reads that the advanced scheme does in
advance to fetch the sample array from the disk to DRAM and eventually pre-
construct the histogram. Overflow elements to disk increase if the sampling is
poor. But here the overhead in random disk reads to construct a large sample
array outweigh the savings obtained by accuracy from it. We can see the decline
in the sorting time and PCM writes count of the advanced PCM sorting scheme
as the sample array gets smaller. Counting sort is plotted just for reference.
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Fig. 8. Effect of sampling

3.4 Varying DRAM size

DRAM size influences every scheme because it helps alleviate PCM writes in
all the schemes. Figure 9 shows the results. We do not present the results for
the selection sort because of its long running time. As we know counting sort
can perform well in special cases when there is a large DRAM to fit the count
array of the entire memory block. As shown in the result, counting sort is faster
when a DRAM as large as 20% of the main memory is available. Beyond 10%
of DRAM size, the sample array becomes large demanding more random reads
from advanced PCM sort. This is unrealistic as such a large DRAM buffer is
not good for a hybrid PCM architecture because it defeats the purpose of using
PCM as main memory. Basic PCM sort performs well with respect to time, PCM
reads and writes. As usual, though advanced PCM sort takes longer to sort, it
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aggressively reduces PCM reads and writes. Counting sort performs poorly in
PCM reads. Realistically, if we consider the interval of 3% to 10% for DRAM
buffer size, advanced PCM sort emerges the overall winner.
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Fig. 9. Effect of DRAM size (non-uniform distribution)

4 Conclusion

In this paper, we have proposed two PCM-aware sorting algorithms that can
mitigate writes on PCM by efficient use of the small DRAM buffer. Our perfor-
mance evaluation shows that the proposed schemes can significantly outperform
existing schemes.
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